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Motivation

 Policy-gradients or Q-learning perform sub-optimally when
rewards are delayed or episodic

« Temporal Credit Assignment is hard

Reward
(win, lose)

— S ces %éé

GO: Reward signal only at the Super Mario: Many actions don’t yield any
end of the episode external reward signal



Self-Imitation via Divergence-Minimization

Main idea - Efficiently exploit past good behaviors

« Maintain a buffer B of high return trajectories from the previous

agent rollouts
- We use a priority queue (min-heap). Trajectory return is the priority
- Agent exploration could be guided by action- or parameter-space noise,
curiosity etc.

« Policy learning objective: minimize divergence (in some distance
metric) between state-action distributions of policy and buffer

min D(px, {s:, a;}B) D : distance metric
T



Self-Imitation via Divergence-Minimization

 Similar to GAIL', using Jenson-Shanon divergence as the
distance metric gives a min-max objective

min mgx]E(s,a)NpB log D(s,a)] + E(s a)~p, l0g(1 — D(s,a))]
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Expert Demonstrations Top-k trajectories thus
(External supervision) far (Self-supervision)

1. Generative Adversarial Imitation Learning (Ho & Ermon, 2016)



Self-Imitation via Divergence-Minimization

 Similar to GAIL', using Jenson-Shanon divergence as the
distance metric gives a min-max objective

minmaxE .., log D(s,a)] + E(s 4)np, 10g(1 — D(s,a))]
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Gradient of this objective

w.r.t policy parameters is the
policy-gradient with rewards

r(s,a) = —log(l — D(s,a)) )
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1. Generative Adversarial Imitation Learning (Ho & Ermon, 2016)



Combining Reward Sources

VO??(WO) =Vl (s,a)~pr [TGHV(S, a)] + BV

Y (s,a)~pnr [_ 108(1 — D(Sa a))]

Policy Gradient with real
environmental rewards

Policy Gradient with synthetic rewards
from a learned discriminator

* Environmental rewards ré"V(s,a) can be sparse or delayed

« Synthetic rewards are dense for each (s,a), helping with temporal

credit assignment




Algorithm Schema

Calculate two policy-gradients
with the current trajectory, one

using the environmental 3 Train the discriminator with samples
rewards, and the other using from the priority buffer as “real”, and
. discriminator rewards the current trajectory as “fake”
P-4 Update agent RL algorithm Rewards
A, SRR ( : ) ( Discriminator
| 278 PPO §

et ] |

1 Generate trajectory
Priority Queue
[ Buffer (capacity k)
§'§ 2 Check if trajectory can be added to the
o priority queue — reject if return is less

than current minimum return




Performance on Locomotion Tasks
(with episodic rewards)
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Baseline PPO with only sparse
environmental rewards is
poor due to difficulty in
temporal credit assighment

Adding dense discriminator
rewards created from self-
generated past good trajectories
enables efficient learning




Limitations of Self-Imitation

® The approach is reliant on the presence of high return (and correct)
trajectories in the priority buffer. A few failure cases are presented

No reward signal in trajectory - Deceptive Rewards -
Buffer has random trajectories, Buffer has undesirable
and Sl is not useful until the trajectories, and Sl
reward is obtained at-least once hastens convergence to

sub-optimal reward



Diverse Policy Ensemble

* Proposed Solution - Train an ensemble of interacting Self-imitation
agents, with an explicit diversity enforcement

 Max-entropy objective over a policy distribution: max Eg~q[n(0)] + aH(q)

 Stein Variational Gradient Descent as the Bayesian inference
algorithm to sample from the resulting energy-based distribution®
— It represents g with an ensemble of particles (policies) {6;}"_,
which are iteratively updated as:

1 mn
0; — 0; + €A, =~ z; (Vo n(me,)k(6;,0:) + aVe,k(6;,0:)]

R

# Stein Variational Policy Gradient, Liu et al. Policy Gradient




Diverse Policy Ensemble

1
92’ — 9@ + €A97;, E z:: VG 77 7I'9 (gja 9’&) T Ongjk(gj, 9%)]
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* Kernel based on JS divergence: k(6,,0;) = exp(—Djs(prg. » Prs. )/T)

Policy Gradient

o Af; then includes a term of the form | Ve, D s (Pwoj ; p’irgz.) which is the
repulsion gradient, pushing policies i and j apart in the state-action space

* Repulsion gradients are calculated using the policy-gradient theorem, with
rewards obtained from trained discriminators



Diverse-S| Ensemble in 2D-Maze

Deceptive Rewards (a) SI-independent (b) SI-interact-JS
state-density state-density

* Baseline 2 8 independent S| agents
* Ours = 8interacting Sl agents with D, repulsion



Diverse-SI Ensemble in Modified MulJoCo
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* Forward velocity reward is only provided if the center-of-mass of bot is
beyond a certain (pre-specified) threshold distance

* Sl-interact-RBF baseline uses RBF kernel® for SVGD

1. Stein Variational Policy Gradient, Liu et al.



Key Takeaways

v’ Diversification with SVGD helps in
discovery of sparse rewards

v’ Self-imitation then helps to efficiently
exploit the discovered rewards




