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Introduction
Policy-gradient RL algorithms struggle in environments
with delayed or episodic rewards.

Our contributions:

•Self-imitation (SI): Exploiting useful agent behavior from
the past, to improve temporal credit assignment.

•Exploration via a diverse ensemble of Self-imitation agents,
using Stein Variational Gradient Descent (SVGD).

SI with GAIL
•GAIL (Ho & Ermon, 2016) frames imitation learning as
matching the state-action visitation distributions of the
expert and the policy.

• Exploiting the past: Maintain a priority buffer B of
high return trajectories from the previous policy rollouts,
and optimize the policy to match the state-action
visitation distribution in the buffer.

min
π

D(ρπ, {si, ai}B) D : distance metric

•Similar to GAIL, using Jenson-Shanon divergence as the
distance metric gives a min-max objective,
min
π

max
D

E(s,a)∼ρB[logD(s, a)] + E(s,a)∼ρπ[log(1−D(s, a))]

• Combining RL and SI:

∇θη(πθ) = ∇θE(s,a)∼ρπ[r(s, a)]+
β∇θE(s,a)∼ρπ[− log(1−D(s, a))]

-Environmental rewards r(s,a) can be sparse or delayed.

- Synthetic rewards − log(1−D(s, a)) are available for each (s, a),
helping with temporal credit assignment.

Algorithm Schema

Diverse Policy Ensemble with SVGD
Motivation: A key limitation of this Self-imitation approach is the
reliance on the presence of high return trajectories in the priority buffer. A
few failure cases are illustrated.

Buffer has random
trajectories, and SI is not
useful until the reward is
obtained atleast once.

Buffer has undesirable
trajectories, and SI
hastens convergence to
sub-optimal reward.

2-armed bandit with reward
distributions Bernoulli (p) and (p+ε)
makes it difficult to converge to the
optimal policy with SI.

Proposed Solution: Train an ensemble of interacting Self-imitation
agents, with an explicit requirement for diversity.

•Max-entropy objective: maxq Eθ∼q[η(θ)] + αH(q)

•SVGD as the Bayesian inference algorithm to sample from the resulting
energy-based distribution. It represents q with an ensemble of particles
(policies) {θi}ni=1, which are iteratively updated as:

θi← θi + ε∆θi, ∆θi = 1
n

n∑
j=1

[
∇θjη(πθj)k(θj, θi) + α∇θjk(θj, θi)

]

•Kernel based on JS divergence: k(θj, θi) = exp(−DJS(ρπθj, ρπθi)/T )
-∆θi includes a term of the form: ∇θiDJS(ρπθj, ρπθi), which is the repulsion gradient,
pushing policies i and j apart in the state-action space.

-Repulsion gradients are calculated using the policy-gradient theorem, with rewards
obtained from trained discriminators (one for each policy pair i, j).

Results
Experiment I: Compare single-agent Self-imitation to standard
policy-gradient RL in MuJoCo environments with episodic rewards.

SI PPO
Walker 2996 252

Humanoid 3602 532
H-Standup (× 104) 18.1 4.4

Hopper 2618 354
Swimmer 173 21

Invd.Pendulum 8668 344

• More in paper: Evaluation on noisy environments (each reward rt masked
to zero with some probability); comparison to CEM and ES.

Experiment II: Elucidate failure of Self-imitation in harder tasks, and
measure the benefit of training an ensemble of SI agents with explicit DJS

repulsion between policies (labeled SI-interact-JS). The SI-independent
baseline trains isolated SI policies and selects the best among them.

• 2D-Maze with deceptive rewards.

Left: State-density plots for SI-independent and SI-interact-JS, respectively.
Right: Final kernel matrix for SI-independent and SI-interact-JS, respectively.

•MuJoCo locomotion tasks: Forward velocity reward is only provided if the
center-of-mass is beyond a certain threshold distance.
- SI-interact-RBF uses RBF kernel for SVGD

Takeaways

a. Diversification with SVGD helps in discovery of sparse rewards
b. Self-imitation then helps to efficiently exploit the discovered rewards
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