Distributed and Secure ML using Self-tallying Multi-party Aggregation

Yunhui Long*, Tanmay Gangwani*, Haris Mughees and Carl Gunter
(* equal contribution)

NeurIPS'18 workshop on Privacy Preserving Machine Learning (PPML)
Motivating Example -- Cumulative Voting

Goals:
- Calculate Homomorphic Vector Addition
- Protect privacy
- Generate and Validate Proofs for Input Validity

Pizza: 10
Salad: 0

Pizza: 7
Salad: 3

Pizza: -100
Salad: 110
Challenges

- No trusted third party
- No private channel
- Participating Parties can be malicious

Our Approaches

- Blockchain
- Additive Homomorphic Encryptions [Hao et al.]
- ZKP for input validity
 - L1 - norm range proof
 - L2 - norm range proof

Multi-party Vector Addition Protocol (Round 1)

- Step 1: Generate secret keys that can be cancelled out

\[f(\text{secret 1}) + f(\text{secret 2}) + f(\text{secret 3}) = 0 \]
Multi-party Vector Addition Protocol (Round 2)

- Encrypted Input
- ZKP for Input Validity

Step 2: Verify ZKPs (L1 norm)
- Step 3: Calculate results (baby-step and giant-step)

Pizza: 0
Salad: 10

Pizza: -100
Salad: 110
Self-tallying:

- Verify ZKPs offline
- Compute the results offline
- No trusted talliers

- Store all the ZKPs
- Store all the encrypted inputs
Beyond Cumulative Voting

- Machine Learning models
- Train on ALL data -> better accuracy
- Preserve confidential info.
- Get predictions (locally)

Naive Bayes\left(\begin{array}{c}
\text{lock} \\
\text{lock} \\
\text{unlock}
\end{array} \right) = \text{Naive Bayes}\left(\begin{array}{c}
\text{lock} \\
\text{lock} \\
\text{lock}
\end{array} \right)
Beyond Cumulative Voting

- Machine Learning models
- Train on ALL data -> better accuracy
- Preserve confidential info.
- Get predictions (locally)

Naive Bayes (🔒 + 📝 + 🚫) = Naive Bayes (📝 + 📝 + 🚫)

- Linear Regression
- Naive Bayes
- Decision Trees
- Matrix Ops. (SVD etc.)
- More...
One ZKP too many!

- **ZKP L2 norm**
 - Negative values ok
 - Composed of 4 ZKPs

- **ZKP L1 norm**
 - Only positive values
 - Composed of many ZKPs

- **Optimizing range proofs**
 - Use base > 2
 - Gotta Batch’em All

\[
\begin{align*}
\left[-3 \ 4 \ -5 \ 7 \right] \ + \ \left[-2 \ 4 \ 5 \ -9 \right] \\
\left[3 \ 4 \ 5 \ 7 \right] \ + \ \left[2 \ 4 \ 5 \ 9 \right]
\end{align*}
\]
Implementation

- ECC ElGamal
- Off-chain crypto
 - Generation and Verification
- Block-chain as white board
 - Proofs submission
 - Other public information
ZKP Time Overheads

ZKP Generation Time per User

ZKP Verification time per User (n=1)
Time Analysis

Time to Compute Discrete-log

Verification Time per User with Increasing Total Users
Future Work

- Denial of Service Attacks
 - User fails to reveal the right ciphertext in the second round
 - Countermeasure 1: Identify the adversary, remove it from the protocol, and start a new round
 - Countermeasure 2: Punish the adversary by taking its collateral
 - More efficient countermeasures?

- Solve an open problem!
 - Discussion Forum Problem in cryptocurrency governance?
 - Multi-party Machine Learning?
 - Solved: Decision Tree, Naive Bayes, Matrix Factorization, Linear Regression
 - Challenges: SVM, Neural Network, LDA

- Evaluation of Alternative Methods (SGX, Generic Snarks)

- Combination with extra properties (e.g. Coercion resistance)

- Economic Feasibility
Thank You!