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Motivation

* Reinforcement Learning is sample-inefficient: often millions of
samples required to learn a good policy

* Environment interaction may be expensive
* True of real-world robotics. Risk of causing damage to hardware/surroundings

s i AN
NS VNSV N 7

4 XS \*‘ % ‘ X
LRI 0 RN 2N
AN,

SRS

Policy Environment



Transfer Learning in RL

* Assume access to a pre-trained teacher policy
* Trained in with state space , action space
* Teacher policy network g4, value network le,

* Train student policy in target MDP with state space S;,,4, action
space A4

* Student policy network 1y, value network V3,

* |deally, teacher should help accelerate the student learning



Transfer Learning — MDP Mismatch

* Prior work has considered setting where = Starg
¢ What |f * Starg; 7 Atarg?

— Atarg

* How to handle difference in state space?

* How to handle difference in action space?
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Transfer Learning — MDP Mismatch

* How to handle difference in state space?
* An embedding space learned through a network
* This network acts a conduit between S;,-, and
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Embedding Space

* Introduce learned embedding space
* Parameterized by encoder function ¢(-)
* Definedas S,,,;, ={¢p(s)|s € Starg)

* Dimension of embedding space must match state-space dimension of source
MDP: |Semb| = |Ssrel

e Can now utilize the teacher networks for knowledge transfer!

4 0

9%
AN
X K

LK PA,

f‘:}: }‘> DA A
AV O

)/ \
\V//\\O Pass this to teacher
E N COd er ¢ networks to extract

useful information

Starg




Embedding Space Desiderata

* Desired property 1: Embeddings must be task aligned
* Embedding parameters should be updated to maximize the cumulative discounted

rewards in the target MDP

* Desired property 2: Embeddings must have high correlation with input states

in target MDP

* We propose to maximize a lower bound to the mutual information (Ml) between state
Starg and embedding ¢ (S¢qrg)
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Embeddings with Mutual Information
Maximization

* Lower bound to Ml between state s and embedding e*:

H(s) + Eg e[logq,(s|e)]

* gu(s|e):
* Neural network that outputs mean of a multivariate Gaussian $(Starg)
* Learned diagonal covariance matrix

* Loss: Ly (¢, w) = _Es~pn0 [log q., (s | P(s))] C i
* Pr,: State-visitation distribution Starg
* Entropy H (s) is constant w.r.t. encoder parameters ¢ and
variational parameters w, so we can omit it qd,(s]e)

[1] Variational information maximization for neural coding, Felix Agakov and David Barber. Encoder (.b



Transfer Learning — MDP Mismatch

* How to handle difference in action space?
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Knowledge Transfer

* |dea: Augment representations of student with teacher representations?

A ,
- Action

* Feed current state s;,,.; € 5444 into student networks,
embedding ¢ (S¢grg) in into teacher networks

* Weighted linear combination at each layer j:

_ h7119= G(pézé + (1 - pé)Zél)
otation i 7 i
o activation function hV¢= G(p¢Z¢ + (1 - plp)zwr)

Z: pre-activations
p: mixing weights

Student policy/value network

1. Knowledge Flow: Improve Upon Your Teachers, Liu et al. Teacher policy/value network



Mixing Weights
* Lower values indicate heavier dependence on teacher representations

* Encourage student to be independent of the teacher by end of training?!
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1. Knowledge Flow: Improve Upon Your Teachers, Liu et al.



Mutual Information based Knowledge Transfer
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Complete Algorithm (MIKT)

Can incorporate into any base RL algorithm; we choose PPO

Update ¢ with Vg [Ly, (), @) + Lppe(6,9,0", ¢, )]

1 1

Mutual Information RL Loss
Loss

Update 9, Ip with V@,I/)LPPO (9, l/), 9’, llJ’, ¢)
Update w with V Ly (¢, w)
Update {p} with Vp [Lcouplin,q + Lppo]




Experimental Setup

* MuloCo locomotion tasks (Ant, Centipedel)

* Centipede tasks differ in number of legs and disability
(Cp variants have some legs disabled)

Environment __| State Dimension
7 10

CentipedeFour 9

CentipedeSix 139 16
CentipedeEight 181 22
CpCentipedeSix 139 12
CpCentipedeEight 181 18
Ant 111 8

1. NerveNet: Learning Structured Policy with Graph Neural Networks, Wang et al.
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Results

* Methods
* MIKT (ours)
e VPG: PPO on target task (no transfer learning)

* MLPP: Re-use middle layers of pre-trained network,

and output layers
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Encoder Ablation

* Are gradients from both {Lypo, Ly;} to the encoder beneficial?

* MIKT w/o MI: encoder does not receive gradients from L,;

* MIKT w/o RL gradients: encoder does not receive gradients from Lpp,
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Task Similarity Ablation

 How does task similarity impact MIKT?

* We experiment with transfer from Centipede-{Four, Six} to CentipedeEight

(source and target tasks are similar) and transfer from Hopper (source and target
tasks are different)
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Summary

 MIKT enables transfer learning between MDPs with different state
and action spaces

* Learned embedding space

* Mutual Information maximization: teacher representations depend on
current state in the student MDP

* Task aligned: encoder trained to maximize cumulative discounted reward

* Knowledge Transfer
* Augment student representations with teacher representations



