Learning Guidance Rewards with Trajectory-space Smoothing

Tanmay Gangwani, Yuan Zhou, Jian Peng

Introduction and Motivation

- Reinforcement learning with end-of-episode feedback (episodic rewards)
- Representative of real-world decision making in robotics, finance, chemical-synthesis, healthcare. Below: a use-case in hardware design – learning a data-aware cache replacement policy

- Current value-based RL algorithms perform poorly with sparse episodic rewards
- High bias (with TD) and variance (with MC) impairs value estimation
- Aggravates the long-term temporal credit assignment problem

SAC with delayed rewards on MuJoCo tasks. For delay=k, the agent receives no reward for (k - 1) timesteps and is then provided the accumulated rewards at the kth timestep. Increasing the delay leads to progressively worse performance.

Solution philosophy (reward decoupling) [1]

- $\,\circ\,\,$ Don't use the episodic rewards directly for RL optimization
- Learn surrogate rewards to guide the agent towards maximizing the true (episodic) rewards

We refer to these as **Guidance Rewards**. Desired properties:

- Afford dense supervision
- Efficient to compute (without any auxiliary learned networks)
- Easy to incorporate into the state-of-the-art RL algorithms

<u>Guidance Rewards (Intuition and Definition)</u>

Introduce a distribution over trajectories $M_{\overline{\tau}}(\tau)$, parameterized by a reference trajectory $\overline{\tau}$. Use this to define a modified RL objective:

$$\tilde{\eta}(\pi_{\theta}) = \mathbb{E}_{\bar{\tau} \sim \pi(\theta)} \left[\mathbb{E}_{\tau \sim M_{\bar{\tau}}} \left[R(\tau) \right] \right]$$

 $M_{\overline{\pmb{\tau}}}(\tau) \triangleq \delta(\tau = \overline{\pmb{\tau}}) \,\, {\rm recovers}$ the standard RL objective

Let $p(\tau)$ be some trajectory distribution. Define a reweighted $p(\tau)$ distribution to have mass only over trajectories that include the reference pair (\bar{s}, \bar{a})

 $p_{\overline{s}\overline{a}}(\tau) \propto p(\tau)\mathbb{1}[(\overline{s},\overline{a}) \in \tau]$

Define $M_{\overline{\tau}}(\tau)$ such that trajectories that overlap with the reference trajectory $\overline{\tau}$ (in terms of states and actions) are preferred

$$M_{\overline{\tau}}(\tau) = (1 - \gamma) \sum_{i=0}^{\infty} \gamma^{i} p_{\overline{s}_{i}\overline{a}_{i}}(\tau) \quad ; \overline{\tau} = \{\overline{s}_{i}\overline{a}_{i}\}_{i=0}^{\infty}$$

Insert in 1 and rearrange to get

Episodic environmental return

 $\tilde{\eta}(\pi_{\theta}) = \mathbb{E}_{(\bar{s}_i, \bar{a}_i) \sim \pi_{\theta}} \left[\sum_{i=0}^{\infty} \gamma^i r_g(\bar{s}_i, \bar{a}_i) \right] \quad ; r_g(\bar{s}, \bar{a}) = \mathbb{E}_{\tau \sim p_{\bar{s}\bar{a}}(\tau)} [R(\tau)]$

Guidance Reward for a state-action pair can be computed as the expected return of the past trajectories which include that pair! (please see paper for further intuition as a uniform credit assignment mechanism)

Algorithm Sketch

► Collect trajectories { τ } with current policy Add { τ } to the reply buffer B For *k* steps: Sample transitions from B Compute guidance rewards for transitions (w/ MC estimate)

Update critic (policy evaluation) and actor (policy improvement)

Experiments

1) Tabular Q-learning in Grid-World with Episodic Rewards

2) Soft Actor-Critic on MuJoCo Locomotion with Episodic Rewards

Guidance rewards incorporated with SAC – referred to as **SAC** (IRCR). We contrast it with SAC (w/ env. rewards) and two recent approaches for dealing with sparse, delayed rewards – GASIL and Reward-Regression. In these environments, a reward is provided only at the last timestep of every episode

3) Multi-agent (particle) Environment

Guidance rewards used in a multi-particle domain where agents navigate to various points of interest in a 2D world with continuous state- and action-space. RL algorithms used are TD3 and distributional-RL (C51)

[1] Sorg, Jonathan Daniel. The Optimal Reward Problem: Designing Effective Reward for Bounded Agents

