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Guidance Rewards (Intuition and Definition) Experiments

Introduction and Motivation

1) Tabular Q-learning in Grid-World with Episodic Rewards

Env. Rewards

Introduce a distribution over trajectories M:(7), parameterized by a reference
trajectory 7 . Use this to define a modified RL objective:

= Reinforcement learning with end-of-episode feedback (episodic rewards)
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p 2) Soft Actor-Critic on MuJoCo Locomotion with Episodic Rewards
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Guidance rewards incorporated with SAC — referred to as SAC
(IRCR). We contrast it with SAC (w/ env. rewards) and two recent
approaches for dealing with sparse, delayed rewards — GASIL and
Reward-Regression. In these environments, a reward is provided
only at the last timestep of every episode
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= High bias (with TD) and variance (with
MC) Inj2relire value estimation SAC with delayed rewards on MuJoCo
tasks. For delay=k, the agent receives no
reward for (k - 1) timesteps and is then
provided the accumulated rewards at the
kth timestep. Increasing the delay leads to
progressively worse performance.

\Guidance Reward for a state-action pair can be computed as the

‘expected return of the past trajectories which include that pair!
I(please see paper for further intuition as a uniform credit assignment
'mechanism)

= Aggravates the long-term temporal
credit assignment problem

3) Multi-agent (particle) Environment
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the true (episodic) rewards Add {2) to the reply buffer B > pog(7) is

characterized using
a replay buffer B
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We refer to these as Guidance Rewards. Desired properties:

o Afford dense supervision
o Efficient to compute (without any auxiliary learned networks)
o Easy to incorporate into the state-of-the-art RL algorithms

For k steps:
Sample transitions from B
Compute guidance rewards for transitions (w/ MC estimate)
.«xx Update critic (policy evaluation) and actor (policy improvement)

Guidance rewards used in a multi-particle domain where
agents navigate to various points of interest in a 2D world with
continuous state- and action-space. RL algorithms used are
TD3 and distributional-RL (C51)
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