STATE-ONLY IMITATION WITH TRANSITION DYNAMICS MISMATCH

Tanmay Gangwani, Jian Peng

International Conference on Learning Representations, ICLR 2020

IMITATION LEARNING (IL)

Environment

Teleoperation

Robot Image from Zhang et. al, Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation

IMITATION LEARNING (IL)

IL - ENVIRONMENT MISMATCH

- Assumption in popular scalable model-free IL algorithms (GAIL, AIRL): the expert and learner (imitator) operate in the same shared environment
 - Formally, $\{S, A, T, r, \gamma\}_{\text{expert}} = \{S, A, T, r, \gamma\}_{\text{learner}}$
 - $\bullet \quad s_{t+1} \sim T(\cdot | s_t, a_t)$

IL - ENVIRONMENT MISMATCH

- Assumption in popular scalable model-free IL algorithms (GAIL, AIRL): the expert and learner (imitator) operate in the same shared environment
 - Formally, $\{S, A, T, r, \gamma\}_{\text{expert}} = \{S, A, T, r, \gamma\}_{\text{learner}}$
 - $\bullet \quad s_{t+1} \sim T(\cdot | s_t, a_t)$
- We devise an IL algorithm for efficient IL under transition dynamics mismatch, T_{expert} ≠ T_{learner}

IL - ENVIRONMENT MISMATCH

- Assumption in popular scalable model-free IL algorithms (GAIL, AIRL): the expert and learner (imitator) operate in the same shared environment
 - Formally, $\{S, A, T, r, \gamma\}_{\text{expert}} = \{S, A, T, r, \gamma\}_{\text{learner}}$
 - $s_{t+1} \sim T(\cdot | s_t, a_t)$
- We devise an IL algorithm for efficient IL under transition dynamics mismatch, $T_{expert} \neq T_{learner}$
- The algorithm does not require expert actions, therefore the action-space can also be different
 - $\{S, X, Y, r, \gamma\}_{\text{expert}} = \{S, X, r, \gamma\}_{\text{learner}}$

Leads to broader applicability of IL: Data reuse for cross-domain imitation, learning from weak-supervision (e.g. videos)

GAIL/AIRL – ALGORITHM SKETCH

Expert demonstrations $\tau_i = \{s_0, ..., s_T\}$

Policy π_{θ} : Update with RL using pseudo rewards; generate rollouts in L-MDP

Discriminator: Update with state samples from π_{θ} and state samples from the expert demonstration. Use actions if available*

* While GAIL [1] can work with state-only expert data, AIRL [2] necessarily needs state-action expert data

[1] Ho & Ermon, Generative Adversarial Imitation Learning[2] Fu et al., Learning Robust Rewards with Adversarial Inverse Reinforcement Learning

I2L – ALGORITHM SKETCH

I2L – ALGORITHM SKETCH

Expert demonstrations (state-only)

Update B with new L-MDP rollouts using a *metric* obtained from the current critic

Expert demonstrations (state-only) **12L – ALGORITHM SKETCH** $\tau_{i} = \{s_{0}, \dots, s_{T}\}$ **Discriminator rewards Policy** π_{θ} : Update with Priority-buffer (B) Discriminator: Update *Critic:* Update with state {s,a} tuples RL using pseudo with state-action samples from the priority-buffer rewards; generate samples from π_{θ} and B and state samples from the rollouts in L-MDP state-action samples expert demonstration from the priority buffer B In-domain Self-imitation. **Cross-domain State-distribution** Reduce $d(\rho_{\pi}, \rho_{B})$ matching. **Reduce** $d(\rho_{\rm B}, \rho^*)$

I2L – THEORETICAL JUSTIFICATION

 Maximum Entropy Inverse RL [Ziebart 2010] can be interpreted as the following maximum likelihood problem:

$$\max_{\omega} \mathbb{E}_{\tau \sim p^*(\tau)}[\log p_{\omega}(\tau)] \quad \text{with,} \quad p_{\omega}(\tau) = \frac{p(s_0) \prod_t p(s_{t+1}|s_t, a_t) e^{f_{\omega}(s_t, a_t)}}{Z(\omega)}$$

• We show that under certain mild assumptions, the following lower-bound holds:

$$\mathbb{E}_{\tau \sim p*(\tau)}[\log p_{\omega}(\tau)] \geq \mathbb{E}_{\tau \sim \tilde{p}(\tau)}[\log p_{\omega}(\tau)] - LW_1(\rho^*, \tilde{\rho})$$

We therefore maximize the surrogate objective:

$$\max_{\tilde{\rho}} \max_{\omega} \mathbb{E}_{\tau \sim \tilde{p}(\tau)} [\log p_{\omega}(\tau)] - LW_{1}(\tilde{\rho}, \rho^{*})$$
Reward learning using buffer trajectories, then
RL on learnt reward \cong **Reduce d**(ρ_{π} , ρ_{B})
Reveal to the second seco

f_{ω} : Parameterized reward fn. $Z(\omega)$: Normalization constant $\rho^*(\tau)$: Expert's trajectory distribution $\tilde{\rho}(\tau)$: Trajectory distribution of any other policy $\tilde{\pi}$ L: Lipschitz constant for f_{ω}

Notation

W₁: 1-Wasserstein distance

Priority-buffer (B) implicitly characterizes $\tilde{\rho}$

EXPERIMENTAL SETUP

MuJoCo locomotion tasks from OpenAI Gym (HalfCheetah, Hopper, Walker, Ant)

Variants	E-MDP	L-MDP
Half gravity	Density = d, Gravity = g , Joint-friction = f,	Density = d, Gravity = g/2 , Joint-friction = f,
Double density	Density = d , Gravity = g, Joint-friction = f,	Density = 2d , Gravity = g, Joint-friction = f,
High friction	Density = d, Gravity = g, Joint-friction = f ,	Density = d, Gravity = g, Joint-friction = 3f ,

EXPERIMENTS (HALF GRAVITY)

- *x-axis*: timesteps of environment (L-MDP) interaction; *y-axis*: mean ± std of episodic return over 5 random seeds
- Methods
 - I2L (our approach)
 - GAIFO (Torabi et al., 2018)
 - > GAIL-S (Ho & Ermon, 2016) adapted for state-only expert demonstrations

Also in paper, comparison to baselines using expert actions (GAIL-SA, AIRL-SA) and BCO (Torabi et al., 2018)

EXPERIMENTS (DOUBLE DENSITY, HIGH FRICTION)

CONCLUSION

- IL using state-only demonstrations collected under system dynamics <u>different</u> from learner environment
- Max-Ent IRL objective transformed into subproblems
 - Learner policy is trained to imitate its own past trajectories
 - Trajectories are re-ranked based on similarity in state-visitation to the expert data
- Further in the paper
 - Empirical estimates of the Wasserstein distance
 - Approximate quantification of the error due to the lower-bound
 - Ablation on buffer capacity

Code : <u>https://github.com/tgangwani/RL-Indirect-imitation</u>

Arxiv: https://arxiv.org/abs/2002.11879

