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Robot Image from Zhang et. al, Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation

Human / Expert demonstrations
𝜏! = {𝑠", 𝑎# , … , 𝑠$ , 𝑎$}

Environment Teleoperation

IMITATION LEARNING (IL)



Human / Expert demonstrations
τ% = {s", a&, … , s', a'}

Environment TeleoperationPolicy

• Behavioral Cloning 
• DAgger, SEARN, SMILe
• Inverse Reinforcement Learning 

(model-based, model-free)
• Maximum Entropy IRL (GAIL, 

GCL, AIRL)
• …

IMITATION LEARNING (IL)



IL - ENVIRONMENT MISMATCH

Shared 
Environment

¡ Assumption in popular scalable model-free IL 
algorithms (GAIL, AIRL):  the expert and learner 
(imitator) operate in the same shared environment

¡ Formally,

¡ x
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IL - ENVIRONMENT MISMATCH

Shared 
Environment

¡ Assumption in popular scalable model-free IL 
algorithms (GAIL, AIRL):  the expert and learner 
(imitator) operate in the same shared environment

¡ Formally,

¡ x

¡ We devise an IL algorithm for efficient IL under 
transition dynamics mismatch, 𝑇()*(+, ≠ 𝑇-(.+/(+

¡ The algorithm does not require expert actions, 
therefore the action-space can also be different

¡ c

c

Leads to broader applicability of IL: Data reuse for cross-domain 
imitation, learning from weak-supervision (e.g. videos)

Learner Env. Expert Env.



GAIL/AIRL – ALGORITHM SKETCH

Discriminator: Update with 
state samples from π0 and 

state samples from the 
expert demonstration. Use 

actions if available*

Policy 𝝅𝜽: Update with 
RL using pseudo 

rewards; generate 
rollouts in L-MDP

Discriminator rewards

Expert demonstrations 
τ% = {s", … , s'}

* While GAIL [1] can work 
with state-only expert data, 
AIRL [2] necessarily needs 

state-action expert data

[1] Ho & Ermon, Generative Adversarial Imitation Learning
[2] Fu et al., Learning Robust Rewards with Adversarial Inverse Reinforcement Learning



I2L – ALGORITHM SKETCH

Discriminator: Update 
with state-action 

samples from π0 and 
state-action samples 

from the priority buffer B

Policy 𝝅𝜽: Update with 
RL using pseudo 

rewards; generate 
rollouts in L-MDP

Discriminator rewards

Priority-buffer (B)
{s,a} tuples 

Expert demonstrations 
τ% = {s", … , s'}

𝜏0!



I2L – ALGORITHM SKETCH

Discriminator: Update 
with state-action 

samples from π0 and 
state-action samples 

from the priority buffer B

Expert demonstrations (state-only)
τ% = {s", … , s'}

Critic: Update with state 
samples from the priority-buffer 

B and state samples from the 
expert demonstration

Policy 𝝅𝜽: Update with 
RL using pseudo 

rewards; generate 
rollouts in L-MDP

Discriminator rewards

Priority-buffer (B)
{s,a} tuples 

Update B with new L-MDP 
rollouts using a metric

obtained from the current critic

𝜏0!



I2L – ALGORITHM SKETCH

Discriminator: Update 
with state-action 

samples from π0 and 
state-action samples 

from the priority buffer B

Critic: Update with state 
samples from the priority-buffer 

B and state samples from the 
expert demonstration

Policy 𝝅𝜽: Update with 
RL using pseudo 

rewards; generate 
rollouts in L-MDP

Discriminator rewards

Priority-buffer (B)
{s,a} tuples 

In-domain Self-imitation. 
Reduce d(𝛒𝛑 , 𝛒𝐁)

Cross-domain State-distribution 
matching. Reduce d(𝛒𝐁 , 𝝆∗)

𝜏0!

Expert demonstrations (state-only)
τ% = {s", … , s'}



I2L – THEORETICAL JUSTIFICATION 
¡ Maximum Entropy Inverse RL [Ziebart 2010] can be interpreted as the following maximum 

likelihood  problem:

¡ We show that under certain mild assumptions, the following lower-bound holds:

¡ We therefore maximize the surrogate objective:

Notation

𝑓! : Parameterized reward fn.
Z(𝜔) : Normalization constant 
𝜌∗(𝜏) : Expert’s trajectory 
distribution  
&𝜌 (𝜏) : Trajectory distribution 
of any other policy &𝜋
L : Lipschitz constant for 𝑓#
W1: 1-Wasserstein distance 

Reward learning using buffer trajectories, then 
RL on learnt reward ≅ Reduce d(𝛒𝛑 , 𝛒𝐁)

Reduce d(𝛒𝐁 , 𝝆∗)
Priority-buffer (B) 

implicitly characterizes !ρ



EXPERIMENTAL SETUP

¡ MuJoCo locomotion tasks from OpenAI Gym (HalfCheetah, Hopper, Walker, Ant)

Variants E-MDP L-MDP
Half      

gravity
Density = d, Gravity = g, Joint-friction = f, … Density = d, Gravity = g/2, Joint-friction = f, …

Double 
density

Density = d, Gravity = g, Joint-friction = f, … Density = 2d, Gravity = g, Joint-friction = f, …

High     
friction

Density = d, Gravity = g, Joint-friction = f, … Density = d, Gravity = g, Joint-friction = 3f, …



EXPERIMENTS (HALF GRAVITY)

¡ x-axis: timesteps of environment (L-MDP) interaction; y-axis: mean ± std of episodic return over 5 random seeds

¡ Methods

Ø I2L (our approach)

Ø GAIFO (Torabi et al., 2018)

Ø GAIL-S (Ho & Ermon, 2016) adapted for state-only expert demonstrations

Also in paper, comparison to 
baselines using expert 

actions (GAIL-SA, AIRL-SA) 
and BCO (Torabi et al., 2018)



EXPERIMENTS (DOUBLE DENSITY, HIGH FRICTION)



CONCLUSION

¡ IL using state-only demonstrations collected under system dynamics different from learner environment

¡ Max-Ent IRL objective transformed into subproblems

¡ Learner policy is trained to imitate its own past trajectories

¡ Trajectories are re-ranked based on similarity in state-visitation to the expert data

¡ Further in the paper

¡ Empirical estimates of the Wasserstein distance 

¡ Approximate quantification of the error due to the lower-bound 

¡ Ablation on buffer capacity

Code : https://github.com/tgangwani/RL-Indirect-imitation

Arxiv: https://arxiv.org/abs/2002.11879

https://github.com/tgangwani/RL-Indirect-imitation/
https://arxiv.org/abs/2002.11879

