
Policy Optimization by Genetic Distillation
Tanmay Gangwani, Jian Peng

Computer Science Department, University of Illinois, Urbana-Champaign

A. Motivation and Goals

•Distill knowledge from locally well-behaved agents into a
single globally well-behaved agent.

•Start with a population of agents and gradually merge
policies over rounds of a genetically-inspired iterative
algorithm.

B. GPO Algorithm

1: population ← π1, . . . , πm
2: repeat
3: population ← mutate(population)
4: parents_set ← select(population, fitness)
5: children ← empty set
6: for tuple(πx, πy) ∈ parents_set do
7: πc ← crossover(πx, πy)
8: add πc to children
9: end for
10: population ← children
11: until k steps of genetic optimization

C. Crossover Operator

Figure: Schema for combining parent policies to produce an offspring
policy. The two-level policy (orange box) is used as the expert for
imitation learning, wherein the KL-divergence between the expert and
the offspring is minimized.

D. Contrast with Parameter Crossover

Figure: Different crossover strategies for neural network policies. State-visitation distribution
plot next to each policy depicts the slice of state-space where that policy gives high returns.
In a naïve approach like parameter-space crossover (shown in bottom-right), edge weights are
copied from the parent network to create the offspring. Our proposed state-space crossover
operator, instead, aims to achieve the behavior shown in bottom-left.

E. MUTATE and SELECT Operators

MUTATE perturbs the parameters of the neural network policy. Instead
of random perturbations, we use standard policy-gradient algorithms (PPO,
A2C) to move the parameters in the direction of the noisy gradients approx-
imated from sampled trajectories.

Data Sharing: When mutating multiple policies in parallel, a policy πi
can also use data samples from other similar policies for off-policy learning.
For example, with the PPO objective, the modified gradient for πi is

where Si ≡ {j | KL[πi, πj] < ε before the start of current round of mutation}
contains similar policies to πi (including πi).

SELECT chooses policies-pairs {πx, πy} with high fitness for the crossover
step. Different fitness functions are possible:

•Performance fitness as sum of expected returns of both policies, i.e.
f (πx, πy) def= Eτ∼πx[R(τ )] + Eτ∼πy[R(τ )]

•Diversity fitness as KL-divergence between policies, i.e.
f (πx, πy) def= KL[πx, πy]

Link to our paper - https://arxiv.org/abs/1711.01012
Contact details - gangwan2@illinois.edu, jianpeng@illinois.edu

F. Crossover Performance

Figure: Average episode reward for the child policies after state-space crossover (left) and
parameter-space crossover (right), compared to the performance of the parents. All bars are
normalized to the first parent in each crossover. Policies are trained on HalfCheetah.

G. Comparison with Baselines

• Implementation is based on OpenAI rllab framework. We benchmark
continuous control locomotion tasks based on MuJoCo.

•GPO is run for 12 rounds with a population of 8 policies, and simulates 8
million timesteps in total for each environment.

•The first baseline algorithm, Single, trains 8 independent policies with
policy gradient using 1 million timesteps each, and selects the policy with
the maximum performance at the end of training

•The second baseline algorithm, Joint, trains a single policy with policy
gradient using 8 million timesteps.

Figure: Performance of GPO and baselines on MuJoCo environments using PPO.

H. Summary

•An algorithm for population-based policy optimization for deep
reinforcement learning, inspired by ideas from neuroevolution.

•Policy crossover in state-space using imitation learning to distill
information from parent policies into an offspring policy.

•Exploit noisy policy-gradients estimates for mutation; and fitness-based
selection operator for quality control.

•Also in the paper:
• Ablation studies
• Results with more environments; and A2C algorithm
• Scalability and wall-clock time analysis

https://arxiv.org/abs/1711.01012

