Policy Optimization by Genetic Distillation

A. Motivation and Goals
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« Distill knowledge from locally well-behaved agents into a
single globally well-behaved agent.

= Start with a population of agents and gradually merge
policies over rounds of a genetically-inspired iterative
algorithm.

B. GPO Algorithm

. population <— my, ..., T,
repeat
population <— MUTATE(population)
parents_set < SELECT(population, fitness)
children <— empty set
for tuple(m,, m,) € parents_set do
M. <= CROSSOVER(7y, 7y)
add 7. to children
end for
10: population <— children
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C. Crossover Operator
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Figure: Schema for combining parent policies to produce an offspring
policy. The two-level policy (orange box) is used as the expert for
imitation learning, wherein the KL-divergence between the expert and
the offspring is minimized.
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D. Contrast with Parameter Crossover
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-igure: Different crossover strategies for neural network policies. State-visitation distribution
nlot next to each policy depicts the slice of state-space where that policy gives high returns.
n a naive approach like parameter-space crossover (shown in bottom-right), edge weights are
copied from the parent network to create the offspring. Our proposed state-space crossover
operator, instead, aims to achieve the behavior shown in bottom-left.

E. MUTATE and SELECT Operators

MUTATE perturbs the parameters of the neural network policy. Instead
of random perturbations, we use standard policy-gradient algorithms (PPO,
A2C) to move the parameters in the direction of the noisy gradients approx-
imated from sampled trajectories.

Data Sharing: When mutating multiple policies in parallel, a policy m;
can also use data samples from other simzilar policies for off-policy learning.
For example, with the PPO objective, the modified gradient for m; is

V. LPTO(8,) = ( Z Ej,t {Vemai(atbt) }L}) - VQE.E?;J {SKL I:ﬂ'ggold) (.|s¢), o, (|3t)]
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where S; = {j | K L|m;, m;] < e before the start of current round of mutation }
contains similar policies to 7; (including ;).

SELECT chooses policies-pairs {m,, m,} with high fitness for the crossover
step. Different fitness functions are possible:

« Performance fitness as sum of expected returns of both policies, i.e.
f (72, 7y) = B [R(T)] + Err [R(T)]
« Diversity fitness as KL-divergence between policies, i.e.
(7, ) « KLy, |

Link to our paper - https://arxiv.org/abs/1711.01012
Contact details - gangwan2Q@illinois.edu, jianpengQillinois.edu
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F'. Crossover Performance
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Figure: Average episode reward for the chi
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Crossovers

d policies after state-space crossover (left) and

parameter-space crossover (right), compared to the performance of the parents. All bars are
normalized to the first parent in each crossover. Policies are trained on HalfCheetah.

G. Comparison with Baselines

« Implementation is based on OpenAl rllab framework. We benchmark

continuous control locomotion tasks based on MuJoCo.

« GPO is run for 12 rounds with a population of 8 policies, and simulates 8

million timesteps in tota.

for each environment.

« The first baseline algorit.

hm, Single, trains 8 independent policies with

policy gradient using 1 million timesteps each, and selects the policy with

the maximum performance at the end of training

« The second baseline algorithm, Joint, trains a single policy with policy
oradient using 8 million timesteps.

— GPO — Single Joint
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Figure: Performance of GPO and baselines on MuJoCo environments using PPO.

H. Summary

« An algorithm for population-based policy optimization for deep

reinforcement learning, inspired by ideas from neuroevolution.

« Policy crossover in state-space using imitation learning to distill

information from parent policies into an offspring policy.

selection operator for quality control.

« Also in the paper:
= Ablation studies

= Results with more environments; and A2C algorithm
= Scalability and wall-clock time analysis

« Exploit noisy policy-gradients estimates for mutation; and fitness-based


https://arxiv.org/abs/1711.01012

