Policy Optimization by Genetic Distillation

A. Motivation and Goals

+ [

« Distill knowledge from locally well-behaved agents into a
single globally well-behaved agent.

= Start with a population of agents and gradually merge
policies over rounds of a genetically-inspired iterative
algorithm.

B. GPO Algorithm

. population <— my, ..., T,
repeat
population <— MUTATE(population)
parents_set < SELECT(population, fitness)
children <— empty set
for tuple(m,, m,) € parents_set do
M. <= CROSSOVER(7y, 7y)
add 7. to children
end for
10: population <— children

© oo XN o o & W b =

11: until £ steps of genetic optimization

C. Crossover Operator

 Parentx | | Parenty |

(als) J y(als)

i
() «—

ntg(als) = mg(parent = x|s) mwx(als) +

T s(parent = y|s) T y(als)

Binary Policy
7t s(parent = x|s)

v Imitation Learning
with DAgger

{ Offspring (7t .)]

Figure: Schema for combining parent policies to produce an offspring
policy. The two-level policy (orange box) is used as the expert for
imitation learning, wherein the KL-divergence between the expert and
the offspring is minimized.

Tanmay Gangwani, Jian Peng

Computer Science Department, University of lllinois, Urbana-Champaign

D. Contrast with Parameter Crossover

Hidden-1 Hidden-2

N ()0
5 l O Action
: | N gk g
RIS
- OQ\ |
)

STATE-SPACE CROSSOVER [PARAMETER-SPACE CROSSOVER]

! !

Hidden-1 Hidden-2 Hidden-1 Hidden-2

Input . .
"ll"’ Action
O
AL IRE K

KA
SAVAVA

-4
——————————

-igure: Different crossover strategies for neural network policies. State-visitation distribution
nlot next to each policy depicts the slice of state-space where that policy gives high returns.
n a naive approach like parameter-space crossover (shown in bottom-right), edge weights are
copied from the parent network to create the offspring. Our proposed state-space crossover
operator, instead, aims to achieve the behavior shown in bottom-left.

E. MUTATE and SELECT Operators

MUTATE perturbs the parameters of the neural network policy. Instead
of random perturbations, we use standard policy-gradient algorithms (PPO,
A2C) to move the parameters in the direction of the noisy gradients approx-
imated from sampled trajectories.

Data Sharing: When mutating multiple policies in parallel, a policy m;
can also use data samples from other simzilar policies for off-policy learning.
For example, with the PPO objective, the modified gradient for m; is

V. LPTO(8,) = (Z Ej,t {Vemai(atbt) }L}) - VQE.E?;J {SKL I:ﬂ'ggold) (.|s¢), o, (|3t)]

“’,.'ES,E ﬂ-ggold) (at|8t)

where S; = {j | K L|m;, m;] < e before the start of current round of mutation }
contains similar policies to 7; (including ;).

SELECT chooses policies-pairs {m,, m,} with high fitness for the crossover
step. Different fitness functions are possible:

« Performance fitness as sum of expected returns of both policies, i.e.
f (72, 7y) = B [R(T)] + Err [R(T)]
« Diversity fitness as KL-divergence between policies, i.e.
(7,) « KLy, |

Link to our paper - https://arxiv.org/abs/1711.01012
Contact details - gangwan2Q@illinois.edu, jianpengQillinois.edu

ILLINOIS

™

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

F'. Crossover Performance

=
=

State-space Crossover

Parameter-space Crossover

-
¥
T

'_I

o
|

|

o
o]

o
o
|

Average episode reward (normalized)
o
IS
I

o
(N

o
o

[Parent-1 [Parent-2 [Child

[Parent-1 [Parent-2 [Child

'_I
(=)
|

o
un

|

1l

|
=] o
9] o
T T
L

Average episode reward (normalized)

|
=
(=]
T

Crossovers

Figure: Average episode reward for the chi

i

o

Crossovers

d policies after state-space crossover (left) and

parameter-space crossover (right), compared to the performance of the parents. All bars are
normalized to the first parent in each crossover. Policies are trained on HalfCheetah.

G. Comparison with Baselines

« Implementation is based on OpenAl rllab framework. We benchmark

continuous control locomotion tasks based on MuJoCo.

« GPO is run for 12 rounds with a population of 8 policies, and simulates 8

million timesteps in tota.

for each environment.

« The first baseline algorit.

hm, Single, trains 8 independent policies with

policy gradient using 1 million timesteps each, and selects the policy with

the maximum performance at the end of training

« The second baseline algorithm, Joint, trains a single policy with policy
oradient using 8 million timesteps.

— GPO — Single Joint

Walker2D

1600
1400 +
1200 +
1000
800 |
600 |
400 |
200 |

-200

HalfCheetah —
T T T T U}

o

Episode reward (moving average)

Timesteps (millions)
Hopper-hilly

)

)
T U\ T
©
T QL
:= -
. 1]
o
i £ 1500+),//,Fprﬂfﬂfﬂﬁf—Jf*fﬂ—ﬂ—-
=
- la]
£ 1000+
4
{1 8§ 500t
| v
(0] 0
. o
2
o 1 2 3 4 5

Episode reward (moving average

6 7
Timesteps (millions)
T InvertedDoublePendulum =

g 1000
©

o

1]
o
o

Episode reward (moving ave

Timesteps (millions)

1 2 3 4 5 6 7
Timesteps (millions)

1400

1200 -
1000 |
800 |
600 |
400 |
200 |
0oL
—200f

—-400

1600
1400
1200

.= 1000

T T T E ©

=== O T}

800 - . & 4000 - . -
o o

£ c

600 | | 2 3000 | 1 3
£ E

400 | 1 B 2000} { P
1] [1»]

= =

o o

200 | | p 1000 - 1 3
g 1 1 1 1 1 1 .g / | 1 1 1 1 1 1 .8

(=l [=

Ll L

800
600
400
200
0
-200

HalfCheetah-hilly

Timesteps (millions)
Ant

Timesteps (millions)

Figure: Performance of GPO and baselines on MuJoCo environments using PPO.

H. Summary

« An algorithm for population-based policy optimization for deep

reinforcement learning, inspired by ideas from neuroevolution.

« Policy crossover in state-space using imitation learning to distill

information from parent policies into an offspring policy.

selection operator for quality control.

« Also in the paper:
= Ablation studies

= Results with more environments; and A2C algorithm
= Scalability and wall-clock time analysis

« Exploit noisy policy-gradients estimates for mutation; and fitness-based

https://arxiv.org/abs/1711.01012

