
University	of	Illinois,	
Urbana	Champaign

1.	MOTIVATION:	SERIALIZATION 2.	INSIGHT

4.	EAGER-FORWARDING

Technion	– Israel	Institute	of	
Technology

University	of	Illinois,	
Urbana	Champaign

Adding node to shared stack

void push () {
Node *new_top = malloc();
while(true) {

old_top = stack;
new_top->next = old_top;
if(CAS(&stack, old_top, new_top))

return; }}

At
om

ic

Core A

compute 
new

ld old

CAS

Core B

compute 
new

ld old

CAS

ld old

Core C

compute 
new

ld old

CAS

ld old

Time

Stall

Stall

Multi-threaded	programs	using	lock-free	primitives
(e.g.	CAS)	suffer	from	CAS	failures	and	serialization.
The	former	is	solved	by	using	load-to-CAS	atomicity
[1].	CASPAR	tackles	serialization.

void push () {
Node *new_top = malloc();
while(true) {

old_top = stack;
new_top->next = old_top;
if(CAS(&stack, old_top, new_top))

return; }}

At
om

ic

Module I : Hardware Queueing
• Enforces load-to-CAS atomicity; marks loads as triggering
• Creates a queue of synchronizing cores at directory

Module II : Eager-Forwarding
• Directory facilitates forwarding of values between cores
• Cores load forwarded values and go speculative
• Sequential passing of full cache line for validation

Module III : Group Commit
• Directory orchestrates parallel validation of cores using 

two-phase commit protocol

3.	CASPAR	MODULES

new_top
generated
independent
of old_top

CASPAR: BREAKING SERIALIZATION IN LOCK-FREE 
MULTICORE SYNCHRONIZATION

Adam	Morrison	 Josep TorrellasTanmay Gangwani

Core A

compute 
new

Core B

compute 
new

ld old

Core C

compute 
new

ld old

Time

CAS CAS

(serial) Validation

(serial) Validation

A	typical	sequence	of	events	at	a	core	is	-

1. Take	a	checkpoint	and	start	speculative	
execution	once	the	triggering load	
(old_top)	reaches	the	ROB	head

2. Compute	new data	and	forward	it	to	
directory,	eagerly	

3. If	directory	provides	a	value	from	
predecessor,	use	it	speculatively	for	old

4. Once	the	full	line	arrives,	validate	and	
terminate	speculation

6.	EVALUATION

(parallel) Validation (parallel) Validation

Directory

This	design	uses	the	directory	to	achieve
simultaneous	validation	of	multiple	cores
in	speculation.	This	reduces	stalls	and	
speculation	aborts.

Two	Phase	Commit	Protocol	–
1. Directory	sends	‘prepare	to	commit’	

to	cores
2. Cores	reply	with	‘ack’	or	’nack’
3. Directory	sends	‘commit’	or	‘resume’	

to	cores

5.	GROUP	COMMIT

Sniper	simulator
64	cores,	OOO
3	Galois	applications
1	BOTS	application
5	kernels

CASPAR	improves	throughput	of	kernels	by	32%
on	average,	and	reduces	execution	time	of	the
sections	considered	in	lock-free	versions	of
applications	by	47%	on	average,	compared	to
existing	proposals	with	hardware	queues.

7.	LIMITATIONS/
FUTURE	WORK

• Is	effective	when	new is	independent	of	old
• Dynamic	re-ordering	of	the	queued-up	cores	

by	the	directory	can	help	uncover	further	
parallelism

• Can	be	used	to	break	conflict	serialization	in	
TM	designs

8.	ALSO	IN	PAPER
• Information	on	proposed	hardware	

changes
• Detailed	working	of	Eager	Forwarding	and	

2PC	protocol
• Memory	consistency	considerations
• Supporting	other	primitives	(e.g.	LL/SC)

new_top can	be	passed	to	the	next	core
in	the	synchronization	queue,	which	can
use	it	as	a	speculative	response	to	old_top.

ld old

CAS

Spec. Spec.

Speculative Execution

Core A

compute 
new

Core B

compute 
new

ld old

Core C

compute 
new

ld old

Time

CAS CAS

ld old

CAS

Spec. Spec.

[1]	Goodman	et	al.	QOSB/QOLB


