CASPAR: BREAKING SERIALIZATION IN LOCK-FREE
MULTICORE SYNCHRONIZATION

Josep Torrellas

I-acoma

~e group

o~
Tanmay Gangwani Adam Morrison

Technion — Israel Institute of
Technology

University of lllinois,
Urbana Champaign

University of lllinois,
Urbana Champaign

1. MOTIVATION: SERIALIZATION

2. INSIGHT 3. CASPAR MODULES

Core A

compute

Adding node to shared stack

void push () {
Node *
while(true) {
= stack;
new_top->next = old_top;
If(CAS(&stack,
return; }}

= malloc();

e

EI\/IuIti-threaded programs using lock-free primitives
: (e.g. CAS) suffer from CAS failures and serialization.
EThe former is solved by using load-to-CAS atomicity
:[1]. CASPAR tackles serialization.

4. EAGER-FORWARDING

Core B

compute

Core A

compute

Core C

compute

(serial) Validatio\nu |

(serial) Validation

= Speculative Execution

1 Take a checkpoint and start speculative

execution once the triggering load
() reaches the ROB head

Compute data and forward it to
directory, eagerly

If directory provides a value from
predecessor, use it speculatively for
Once the full line arrives, validate and
terminate speculation

:Two Phase Commit Protocol —

Core B

compute

Core C

compute

void push () {
Node *
while(true) {
= stack;
new_top->next = old_top;
If(CAS(&stack,

return; }}

5. GROUP COMMIT

Core C

compute

Core B

compute

Core A

compute

Time

(parallel) Validation I A:allel)

Directory

Validation

:This design uses the directory to achieve
:simultaneous validation of multiple cores
:in speculation. This reduces stalls and
Especulation aborts.

1. Directory sends ‘prepare to commit’
to cores :
2. Cores reply with ‘ack’ or 'nack’ _
3. Directory sends ‘commit’ or ‘resume’ :
to cores =

= malloc();

: can be passed to the next core
:in the synchronization queue, which can
:use it as a speculative response to

new_top
generated
iIndependent
of old_top

6. EVALUATION

L:LockBased
LF:LockFree
10% 5% Q:Queue
EF:Eager Fwd.|
C:CASPAR

l I
O ajoiko DR R

FFT-FIFO FFT-LIFO CC-FIFO CC-LIFO IS-FIFO IS-LIFO DT-FIFO DT-LIFO Avg.

100% 30%

: 0.8}
S B
Z 0.6}
= 0.4}
0.2} E
0 B
2 Ro :

100% 30% 10%

» 5 B s 5 - 5 e 5 x 7
& 250 m0 = 5O R0 =50 m0 = 5O R0
—_— <3 —_— 3 —_— = —_— bl

: CASPAR improves throughput of kernels by 32%
Eon average, and reduces execution time of the
:sections considered in lock-free versions of
Eapplications by 47% on average, compared to
Eexisting proposals with hardware queues.

7. LIMITATIONS/
FUTURE WORK

s effective when is independent of
Dynamic re-ordering of the queued-up cores
by the directory can help uncover further

parallelism
Can be used to break conflict serialization in
TM designs

. C—Spec. cycles

Module | : Hardware Queueing
« Enforces load-to-CAS atomicity; marks loads as triggering
* Creates a queue of synchronizing cores at directory

Module Il : Eager-Forwarding
* Directory facilitates forwarding of values between cores

« Cores load forwarded values and go speculative
« Sequential passing of full cache line for validation

Module lll : Group Commit
* Directory orchestrates parallel validation of cores using
two-phase commit protocol

c—Non-spec.

cycles

:Sniper simulator

| :64 cores, 000

- :3 Galois applications
:1 BOTS application
:5 kernels

mm Stall cycles in
spec.

:L Base(B) |
' Queue(Q) _
Bl EagerForwarding(EF)
O CASPAR(C) .

ikl

FIFO LPO MBrot Larson LIFO

o

[—

Normalized Throughput
Do

-

Information on proposed hardware
changes

Detailed working of Eager Forwarding and
2PC protocol

Memory consistency considerations
Supporting other primitives (e.g. LL/SC)

[1] Goodman et al. QOSB/QOLB

